Communications to the Editor

An Electronically Unsaturated Trinickel Complex Containing Triply Bridging Benzyne and 2,2'-Biphenylyl Groups

Martin A. Bennett,* K. David Griffiths, Tamon Okano, Viraraghavan Parthasarathi, and Glen B. Robertson
The Research School of Chemistry Australian National University GPO Box 4, Canberra, ACT 2601, Australia

Received March 27, 1990 Revised Manuscript Received July 9, 1990

Benzyne (o-phenylene, $\mathrm{C}_{6} \mathrm{H}_{4}$) and its derivatives can act as η^{2} ligands donating between two and four electrons in monomeric transition-metal complexes, ${ }^{1}$ e.g., $\mathrm{TaCp}^{*} \mathrm{Me}_{3}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$, ${ }^{2,3}$ $\mathrm{ZrCp}_{2}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right){ }^{4} \mathrm{Re}\left(\eta^{2}-3-\mathrm{MeC}_{6} \mathrm{H}_{3}\right)\left(\eta^{1}-2-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{~L}_{2}$ $\left(\mathrm{L}=\mathrm{PMe}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}\right){ }^{5} \mathrm{Ru}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{4}{ }^{6}$ and Ni -$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Cy}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PCy}_{2}\right)(1){ }^{7}$ They can also behave as bridging ligands in polynuclear metal complexes and are often generated when aromatic derivatives are heated with $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ or $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$. A common structural type contains a four-electron donor $\mathrm{C}_{6} \mathrm{H}_{4}$ group lying over a triangle of osmium or ruthenium atoms, e.g., $\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)(2){ }^{8} \quad \mathrm{M}_{3}(\mathrm{CO})_{7}(\mu-$ $\left.\mathrm{PPh}_{2}\right)_{2}\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left[\mathrm{M}=\mathrm{Os}(3),{ }^{9} \mathrm{Ru}(4)\right],{ }^{10}$ and $\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-$ $\mathrm{H})\left(\mu-\mathrm{AsMe}_{2}\right)\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)(5) .{ }^{11}$ In the course of preparing analogues of 1 containing monodentate tertiary phosphines, we have isolated and structurally characterized a trinickel complex containing both $\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ and a novel bridging $2,2^{\prime}$-biphenylyl group, $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$.

Reduction of $\mathrm{NiCl}\left(2-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{P}-i-\mathrm{Pr}_{3}\right)_{2}(6)^{12}$ with 1% sodium amalgam in THF gives two products in variable proportions that can be separated by fractional crystallization from diethyl ether. The main product, isolated in $30-50 \%$ yield, is the yellow, crystalline, η^{2} benzyne complex $\mathrm{Ni}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{P}-\mathrm{i}-\mathrm{Pr}_{3}\right)_{2}(7)$, identified by comparison of its spectroscopic properties ${ }^{13}$ with those of

[^0]

Flgure 1

complex 1. The minor product, isolated in 4-30\% yield, is a black, crystalline solid (8) that slowly decomposes in solution giving triphenylene. In the aromatic region, the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 shows six peaks of equal intensity and the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows nine resonances, consistent with the presence of two different $\mathrm{C}_{6} \mathrm{H}_{4}$ environments in a $2: 1$ ratio. ${ }^{14}$ The appearance of an $A X_{2}$ pattern in the $\left.\left.{ }^{31} \mathrm{P}\right|^{1} \mathrm{H}\right\}$ NMR spectrum and the resonances of the $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ groups in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicate that there are two $\mathrm{P}-i-\mathrm{Pr}_{3}$ ligands of one type and one of another.

These features are accommodated by the molecular structure shown in Figure 1, which has been determined by single-crystal X-ray analysis. ${ }^{15}$ It consists of a near-right-angled isosceles
(13) ${ }^{1} \mathrm{H}$ NMR (THF- d_{8}) $\delta 7.17(\mathrm{~m}), 6.72(\mathrm{~m})\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right), 2.32(\mathrm{~m}, \mathrm{CH}$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30\left(\mathrm{dd}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, J_{\mathrm{PH}}=12.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (THF d_{8}) $\delta 141.4\left(\mathrm{qn},{ }^{2} J_{\mathrm{PC}}+{ }^{2} J_{\mathrm{PC}}=33.7 \mathrm{~Hz}\right.$, benzyne C), $126.6\left(\mathrm{t}, J_{\mathrm{PC}}+\right.$ $J_{\mathrm{PCC}}=7.5 \mathrm{~Hz}$), $123.4\left(\mathrm{t}, J_{\mathrm{PC}}+J_{\mathrm{PC}}=15 \mathrm{~Hz}\right.$) (aromatic CH), 27.6 (filled in doublet, $\left.{ }^{1} J_{\mathrm{PC}}+{ }^{3} J_{\mathrm{PC}}=17.6 \mathrm{~Hz}, \mathrm{PCC}\right), 20.8(\mathrm{~s}, \mathrm{PCC}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (THF- d_{β}) $\delta 56.4(\mathrm{~s}) ;$ IR (KBr) $1598 \mathrm{~cm}^{-1}(\mathrm{~s}, \nu(\mathrm{C} \cong \mathrm{C})$).
(14) ${ }^{1}$ H NMR (THF- d_{8}) $\delta 8.19$ (d), 7.53 (m), 7.30 (d), 6.86 (t), 6.69 (t) 6.16 (dd) $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 1.84$ (m, PCH), 1.49 (m, PCH) (ca. 2:1 ratio), 1.02 (dt $\left.J_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}+{ }^{5} J_{\mathrm{PH}}=12.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.76\left(\mathrm{dd}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, J_{\mathrm{PH}}\right.$ $=12.1 \mathrm{~Hz}, \mathrm{CH}_{3}$) (ca. 2:1 ratio); $\left.{ }^{13} \mathrm{C}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{THF}-d_{3}\right) \delta 171.7$ (d, $J_{\mathrm{PC}}=$ 29 Hz), 160.6, 149.4 (aromatic C), 150.1, 126.9, 122.6, 122.1, 121.3, 118.9 (aromatic CH), 24.5-23.5 (m, PCC), 21.5-19.5 (m, PCC); $\left.{ }^{31} \mathrm{P} \mid{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\left.d_{\mathrm{g}}\right) \delta 39.3(\mathrm{~d}, 2 \mathrm{P}), 20.1(\mathrm{t}, 1 \mathrm{P})\left(\mathrm{J}_{\mathrm{pp}}=37 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 39.0(\mathrm{~d}, 2 \mathrm{P}), 18.7(\mathrm{t}, 1 \mathrm{P})\left(J_{\mathrm{pp}}=36 \mathrm{~Hz}\right)$

Scheme I

triangle of nickel atoms each bearing one triisopropylphosphine ligand $[\mathrm{Ni}(1)-\mathrm{Ni}(2)=2.405$ (1) $\AA, \mathrm{Ni}(2)-\mathrm{Ni}(3)=2.408$ (1) $\left.\AA, \mathrm{Ni}(1)-\mathrm{Ni}(2)-\mathrm{Ni}(3)=90.81(2)^{\circ}\right]$. The triangle is bridged by a $\mathrm{C}_{6} \mathrm{H}_{4}$ unit on one face and a 2,2'-biphenylyl $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ unit on the other; the $\mathrm{Ni}_{3}\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ core exhibits almost exact mirror symmetry. The four-electron-donor benzyne unit is σ-bonded to $\mathrm{Ni}(1)$ and $\mathrm{Ni}(3)$, and π-bonded to $\mathrm{Ni}(2)$, the geometry being like that found in complexes 2-5. In contrast, the 2- and 2^{\prime}-carbon atoms of the $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ unit are σ-bonded to $\mathrm{Ni}(2)$ and bound orthogonally to $\mathrm{Ni}(1)$ and $\mathrm{Ni}(3)$, respectively. The four $\mathrm{Ni}-\mathrm{C}$ distances to the $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ unit are in the range 1.95-2.00 \AA, which is similar to that observed for the compounds $\left\{\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\right\}_{2} \mathrm{Na}_{4}(\mathrm{THF})_{5}{ }^{16}$ and $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{Na} \cdot \mathrm{OEt}_{2}\right)_{2}-$ $\left(\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\}_{2}\left(\mathrm{~N}_{2}\right) \mathrm{NaLi}_{6}(\mathrm{OEt})_{4}-\mathrm{OEt}_{2},{ }^{17}$ in which the phenyl groups bridge nickel and sodium atoms, but greater than that found in the η^{1}-phenylnickel(II) complexes $\mathrm{Ni}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ $[1.904 \text { (7) } \AA]^{18}$ and $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{3}\right\}\right] \mathrm{BPh}_{4}[1.87$ (2) \AA]. ${ }^{19}$ Although the 2 - and 2^{\prime}-carbon atoms in 8 are each nearly equidistant from the bridged pair of nickel atoms, the σ-bonded nickel atom $\mathrm{Ni}(2)$ is within $0.1 \AA$ of the $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ ring plane, whereas nickel atoms $\mathrm{Ni}(1)$ and $\mathrm{Ni}(3)$ are 1.75 and $1.72 \AA$, respectively, below the plane. Thus, the interactions of the 2 - and 2^{\prime}-carbon atoms with the nickel atoms differ from the more usual three-center, two-electron bonds found in the 2,2'biphenylyllithium compound $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{Li}_{2}(\text { tmeda })_{2},{ }^{20}$ and in other μ-aryls and μ-alkyls of main group and transition elements, e.g., $\mathrm{Al}_{2}\left(\mu-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4},{ }^{21} \quad \mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mu_{2}-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\right.$ $\left.\mathrm{PPhC}_{6} \mathrm{H}_{4}\right)\left(\mu_{2}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, ${ }^{9} \mathrm{Pt}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mu_{2}-\mathrm{PPh}_{2}\right)_{3}\left(\mu_{2}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, ${ }^{22}$ and $\mathrm{Ni}_{2}\left(\mu_{2}-\mathrm{CH}_{3}\right)_{2}\left(\eta^{3}\right.$-1,3-dimethylallyl) ${ }_{2} .{ }^{23}$

Complex 8 can be classified as a 44 e cluster if we assume that $\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ and $\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ donate four electrons each to the three nickel atoms and if we exclude $\mathrm{Ni}-\mathrm{Ni}$ bonding electrons. It is therefore related to the unsaturated clusters of the nickel triad such as $\mathrm{Pt}_{3}(\mathrm{CN}-t-\mathrm{Bu})_{6}(42 \mathrm{e}),{ }^{24} \mathrm{Pt}_{3}(\mathrm{CO})_{3}\left(\mathrm{PCy}_{3}\right)_{3}(42 \mathrm{e}),{ }^{25}$ and $\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left(\mathrm{PCy}_{3}\right)_{4}(44 \mathrm{e}),{ }^{26}$ which, however, differ from 8 in having equilateral triangles. The only other compound in which a $\mu_{3^{-}}$ alkyne is attached to an isosceles triangle of nickel atoms is the
(15) Crystallography: Philips PW1100/20 diffractometer, Mo K $\bar{\alpha}$ radiation ($\lambda=0.7107 \AA$, graphite crystal monochromator), 4 deg $\min ^{-1} 2 \theta, 2 \times$ 5 s backgrounds at extremes, $T=164 \mathrm{~K}$. Black, metallic crystals from diethyl ether; $\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{P}_{3} \mathrm{Ni}_{3}$; triclinic, space group $P \mathrm{I}, a=19.467$ (3), $b=11.116$ (2), $c=10.542$ (2) $\AA ; \alpha=78.22(1), \beta=84.78$ (1), $\gamma=85.44$ (1) $)^{\circ} ; M_{\mathrm{f}}=885.15 ;$ $\rho_{\text {caled }}=1.32 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=2 ; \mu=13.9 \mathrm{~cm}^{-1}$. Specimen crystal dimensions 0.45 $\times 0.23 \times 0.14 \mathrm{~mm}$., maximum $/$ minimum transmission $=0.84 / 0.76$. A total of 12384 measured reflections ($\pm h \pm k \pm 1,5<2 \theta<45^{\circ}$), 5169 unique observed reflections ($I \geq 3 \sigma$). Structure solution by direct methods (DIRDIF); refinement by full-matrix least-squares on F; non-hydrogen atoms anisotropic, hydrogen atoms located by calculation, reflection weights ($\left.\sigma_{\mathrm{s}}{ }^{2}+0.0005 F^{2}\right)^{-1}$; 460 refined parameters, $R=0.022, R_{w}=0.033$, GOF $=1.23$; maximum shift/error $=0.16$, maximum $/ \mathrm{minimum}$ excursions in final difference map $+0.27 /-0.25$ e $^{-3}$.
(16) Brauer, D. J.; Krüger, C.; Roberts, P. J.; Tsay, Y. H. Angew. Chem., Int. Ed. Engl. 1976, 15, 48.
(17) Jonas, K.; Brauer, D. J.; Krūger, C.; Roberts, P. J.; Tsay, Y. H. J. Am. Chem. Soc. 1976, 98, 74.
(18) Churchill, M. R.; O'Brien, T. A. J. Chem. Soc. A 1969, 266.
(19) Sacconi, L.; Dapporto, P.; Stoppioni, P. Inorg. Chem. 1976, 15, 325.
(20) Schubert, U.; Neugebauer, W.; von Ragué Schleyer, P. J. Chem. Soc., Chem. Commun. 1982, 1184.
(21) Malone, J. F.; McDonald, W. S. J. Chem. Soc., Dalton Trans. 1972, 2649.
(22) Taylor, N. J.; Chieh, P. C.; Carty, A. J. J. Chem. Soc., Chem. Commun. 1975, 448.
(23) Krüger, C.; Sekutowski, J. C.; Berke, H.; Hoffmann, R. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1978, 33, 1110.
(24) Green, M.; Howard, J. A. K.; Murray, M.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1977, 1509.
(25) Albinati, A. Inorg. Chim. Acta 1977, 22, L31.
(26) Albinati, A.; Carturan, G.; Musco, A. Inorg. Chim. Acta 1976, 16, L3.
electronically saturated 48 e -complex $\mathrm{Ni}_{3}(\mathrm{CO})_{3}\left(\mu_{3}-\right.$ $\left.\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left(\mu_{3}-\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) .{ }^{27}$

The benzyne and $2,2^{\prime}$-biphenylyl ligands display well-defined intra-ring bond length (and bond angle) inequalities (Figure 1). The pattern in the benzyne ring resembles that observed in 4. However, the distance between the metal-bound carbon atoms [1.434 (3) \AA] and also the average length of the remaining $C-C$ bonds ($1.403 \AA$) in the $\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ ring each significantly exceed the corresponding values in 4 (1.40 and $1.38 \AA$, respectively). This agrees with the idea that the electronic unsaturation of 8 reduces the π-orbital population of its o-phenylene group relative to that in the 48 e complex 4.

Since 8 is not formed from 7 under the reaction conditions, we suggest that the first step is dissociation of one of the bulky $\mathrm{P}-i-\mathrm{Pr}_{3}$ ligands from 6. Two-electron reduction of the resulting threecoordinate nickel(II) complex could give a 14 e benzyne-nickel(0) fragment $\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{P}-i-\mathrm{Pr}_{3}\right)(9)$, which could be regarded as the nickel(I) complex of a phenyl radical (10) (Scheme I). Such a compound could be expected to dimerize to the $2,2^{\prime}$-biphenylylnickel(I) species 11 , which could react with more 9 to give the trimeric compound 8. A somewhat similar stepwise sequence in which free arynes react with organolithium compounds has been invoked to account for the formation of triphenylenes from the thermal decomposition of 2 -halophenyl derivatives of lithium or magnesium, ${ }^{28}$ and from the reaction of lithium metal with o-diiodobenzene or o-bromoiodobenzene. ${ }^{29}$ Experiments to test the proposed sequence and to prepare related clusters containing other alkynes and metals are in progress.

Supplementary Material Available: Tables of crystal data, non-hydrogen atom position and thermal parameters, and bond lengths and angles (9 pages); listing of observed and calculated structure factors for 8 (30 pages). Ordering information is given on any current masthead page.
(27) Davidson, J. L.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Am. Chem. Soc. 1975, 97, 7490.
(28) (a) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1956, 78, 2217; 1957, 79, 2625. (b) Heaney, H.; Lees, P. Tetrahedron Lett. 1964, 3049. (29) Heaney, H.; Mann, F. G.; Millar, I. T. J. Chem. Soc. 1956, I; 1957, 3930.

A Heterogeneous "Ligand-Accelerated" Reaction: Enantioselective Hydrogenation of Ethyl Pyruvate Catalyzed by Cinchona-Modified $\mathbf{P t} / \mathrm{Al}_{2} \mathrm{O}_{3}$ Catalysts

Marc Garland and Hans-Ulrich Blaser*
Central Research Laboratories, R-1055, Ciba Geigy AG
CH-4002 Basel, Switzerland
Received April 4, 1990
Enantioselective hydrogenation reactions are a topic current interest. ${ }^{1}$ While there is a growing understanding of the mechanism of homogeneously catalyzed reactions, ${ }^{2}$ less is known about chiral heterogeneous catalysts. ${ }^{3}$ One such enantioselective catalytic system, $\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$ modified with cinchona alkaloids, is able to hydrogenate α-keto esters with optical yields approaching $90 \%{ }^{4-7}$ It was noted that modification leads to a marked increase in reaction rate, ${ }^{6}$ suggesting a mode of action that has recently

[^1]
[^0]: (1) Bennett, M. A.; Schwemlein, H. P. Angew. Chem., Int. Ed. Engl. 1989 28, 1296.
 (2) Abbreviations: $\mathrm{Cp}^{*}=\eta^{3}-\mathrm{C}_{5} \mathrm{Me}_{3} ; \mathrm{Cy}=$ cyclohexyl, $\mathrm{C}_{6} \mathrm{H}_{11} ; \mathrm{COD}=$ 1,5-cyclooctadiene; tmeda = tetramethyl-1,2-ethylenediamine.
 (3) McLain, S. J.; Schrock, R. R.; Sharp, P. R.; Churchill, M. R.; Youngs, W. J. J. Am. Chem. Soc. 1979, 101, 263. Churchill, M. R.; Youngs, W. J Inorg. Chem. 1979, 18, 1697.
 (4) Buchwald, S. L.; Watson, B. T.; Huffman, J. C. J. Am. Chem. Soc 1986, 108,7411 .
 (5) Arnold, J.; Wilkinson, G.; Hussain, B.; Hursthouse, M. B. J. Chem Soc., Chem. Commun. 1988, 704; Organometallics 1989, 8, 415
 (6) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 2717
 (7) Bennett, M. A.; Hambley, T. W.; Roberts, N. K.; Robertson, G. B Organometallics 1985, 4, 1992.
 (8) (a) Deeming, A. J.; Underhill, M. J. Chem. Soc., Dallon Trans. 1974 1415. (b) Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Rosales, M. J. J. Chem. Soc., Dalton Trans. 1983, 2257.
 (9) (a) Bradford, C. W.; Nyholm, R. S.; Gainsford, G. J.; Guss, J. M.; Ireland, P. R.; Mason, R. J. Chem. Soc., Chem. Commun. 1972, 87. (b) Gainsford, G. J.; Guss, J. M.; Ireland, P. R.; Mason, R.; Bradford, C. W.; Nyholm, R. S. J. Organomet. Chem. 1972, 40, C70.
 (10) Bruce, M. I.; Guss, J. M.; Mason, R.; Skelton, B. W.; White, A. H J. Organomet. Chem. 1983, 25l, 261.
 (11) (a) Deeming, A. J.; Kimber, R. E.; Underhill, M. J. Chem. Soc. Dalton Trans. 1973, 2589. (b) Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; Becker-Dirks, J. D. J. J. Chem. Soc., Dalton Trans. 1981, 1879
 (12) Made by addition of o-dichlorobenzene to a mixture of $\mathrm{Ni}(\mathrm{COD})_{2}$ and triisopropylphosphine in a 1:2 mole ratio.

[^1]: (1) Koenig, E. K. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1985; Vol. 5, Chapter 3.
 (2) Halpern, J. In ref I, Chapter 2.
 (3) Bartok, M. Stereochemistry of Heterogeneous Metal Catalysts; Wiley: New York, 1985; 511.
 (4) Orito, Y.; Imai, S.; Niwa, S. J. Chem. Soc. Jpn. 1980, 670.
 (5) For a review, see: Blaser, H. U.; Müller, M. 2nd International Symposium on Heterogeneous Catalysis and Fine Chemicals; Stud. Surf. Sci. Catal., in press.
 (6) Blaser, H. U.; Jalett, H. P.; Monti, D. M.; Reber, J. F.; Wehrli, J. T. Stud. Surf. Sci. Catal. 1988, 4l, 153.
 (7) (a) Wehrli, J. T. Ph.D. Dissertation, No. 8833, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1989. (b) Wehrli, J. T.; Baiker, A.; Monti, D. M.; Blaser, H. U. J. Mol. Catal. 1990, 61, 207.

